If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2+8y-120=0
a = 2; b = 8; c = -120;
Δ = b2-4ac
Δ = 82-4·2·(-120)
Δ = 1024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1024}=32$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-32}{2*2}=\frac{-40}{4} =-10 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+32}{2*2}=\frac{24}{4} =6 $
| -9(t+3)=36 | | 7(w-3)=42 | | 4a+4=-2+2a | | -5(r+4=-61 | | 7x–10=4x+11 | | 21=-6x+33 | | 9t-6-8t+12=8-12t | | 3(x-2)=2(2x+6) | | 1.7x+1.18=1.1x+2.62 | | 4y(y+1)=-8 | | -13w+-18w-14w-10=-7 | | 4a-6.4=5.1a-9.59 | | 4/8b=-6/3 | | 6y+12=19 | | -3s^2-30s=0 | | -18x+20=-12 | | v=2000/5(1000)-80,000 | | x^2-3x+10=2x+4 | | x2-3x+10=2x+4 | | x+18+x+18=x+27 | | 4x-10/7x+18=2/5 | | 3(2x+9)=3(x+25)+9 | | 10+5s=-9s-6s-10 | | 10+5s=–9s−6s−1010+5s=-9s-6s-10 | | 9x-2x=5x-52 | | -8j+1=-10j-9 | | 4(2x+4)=10 | | x+10=12.5 | | 5(x+2)=x+94 | | 18=9x+2x^2 | | 0.5(7d+4)@=7-1.5d | | 5−4x=5x−(9+9x) |